Wind Loads for Stability Design of Large Multi-Span Duo-Pitch Greenhouses
نویسندگان
چکیده
An atmospheric boundary layer wind tunnel study was performed to determine the overall horizontal wind load on multi-span duo-pitch greenhouses. The results of this study are intended for the stability design of inflexible cladding system greenhouses (designated as Class A in EN 13031-1) with roof pitch angles of 23–24° and ridge heights of 7.5–8m. Both static force and fluctuating pressure measurements were performed to determine the overall horizontal wind force. The results obtained with the static force measurements show that the overall horizontal wind force increases linearly with increasing number of spans. The overall horizontal wind load determined with the mean pressure coefficients derived from the fluctuating pressure measurements was found to be in good agreement with the static force measurements. An investigation into the correlation of the roof pressures showed that these pressures are relatively little correlated. The overall horizontal force on the roof of multi-span buildings reduces significantly because of this lack of correlation. Accounting for the lack of correlation between the roof pressures on a 30span model resulted in a 65% reduction of the peak horizontal wind force on the roof. A comparison was made of the overall horizontal wind forces determined in the current study and calculated with European codes for wind load assessment on greenhouses. EN 13031-1 provides non-conservative outcomes for the overall horizontal wind force on the investigated duo-pitch greenhouse type with more than 30 spans. On the other hand, EN 1991-1-4 is increasingly conservative with larger number of spans.
منابع مشابه
A Comparison of Smart Rotor Control Approaches Using Trailing Edge Flaps and Individual Pitch Control
Modern wind turbines have been steadily increasing in size, and have now become very large, with recent models boasting rotor diameters greater than 120 m. Reducing the loads experienced by the wind turbine rotor blades is one means of lowering the cost of energy of wind turbines. Wind turbines are subjected to significant and rapid fluctuating loads, which arise from a variety of sources inclu...
متن کاملFixed-structure H∞ control design for linear Individual Pitch Control of two-bladed wind turbines
In this paper, a fixed-structure Individual Pitch Control (IPC) design method for two-bladed wind turbines is presented. IPC is an active load reduction technique designed to lower wind turbine loads, which are caused by continuously varying wind conditions. Based on load measurements, the once-per-revolution (1P) loads and harmonics of this frequency (2P, 3P, etc.) can be reduced by rotating (...
متن کاملIntelligent Control for the Variable-Speed Variable-Pitch Wind Energy System
In this paper, a new type of multi-variable compensation control method for the wind energy conversion systems (WECS) is presented. Based on wind energy conversion systems, combining artificial neural network (ANN) control and PID, a new type of PID NN intelligent controller for steady state torque of the wind generator is designed, by which the steady state torque output is regulated to track ...
متن کاملBlade Load Control of Wind Turbine Based on Variable-pitch Control Strategies
The control strategies of blade loads are proposed for the characteristics of blade stresses of variable-speed variablepitch wind turbine. Blade loads are divided into two static and dynamic components. The pitch angle and generator torque are controlled by Single neuron PID controller in the static part. Variables are converted from rotational coordinate to fixed coordinate through multi-blade...
متن کاملLoad Reduction Pitch Control for Large Scale Wind Turbines based on Sliding Mode
With the wind turbines being produced toward to large scale and light weight, the flexibility of blade, drive mechanism and tower increase apparently. Loads suffered by wind turbines during operation become increasingly intricate. Some control approaches could be used to cut down these loads in orde to expand life cycle of generating sets. Aiming at the full load operation zone above rated wind...
متن کامل